Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy (East China Normal University), Shanghai 200241, China
2 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
We demonstrate a portable system integrated with time comparison, absolute distance ranging, and optical communication (TRC) to meet the requirements of space gravitational wave detection. A 1 km free-space asynchronous two-way optical link is performed. The TRC realizes optical communication with 7.7×10-5 bit error rate with a Si avalanche photodiode single-photon detector, while the signal intensity is 1.4 photons per pulse with the background noise of 3×104 counts per second. The distance measurement uncertainty is 48.3 mm, and time comparison precision is 162.4 ps. In this TRC system, a vertical-cavity surface-emitting laser diode with a power of 9.1 µW is used, and the equivalent receiving aperture is 0.5 mm. The TRC provides a miniaturization solution for ultra-long distance inter-satellite communication, time comparison, and ranging for space gravitational wave detectors.
gravitational waves detection time comparison optical communication ranging 
Chinese Optics Letters
2022, 20(10): 100601
作者单位
摘要
华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
介绍一种日盲紫外单光子成像系统。系统采用Geiger模式的硅基雪崩光电二极管(Si APD)的单光子探测器,结合时间相关单光子符合计数技术,实现了0~400 m距离的激光三维成像,成像精度达到22 mm。实验采用266 nm波长激光脉冲(处于日盲紫外波段),由于大气层的吸收作用,在地表几乎不存在该波段的噪声,大幅提高了单光子成像系统的抗背景光噪声的能力。该成像系统可在晴朗的白天运行,实现了全天时中远距离单光子成像。
成像系统 日盲紫外 光子计数 三维成像 激光雷达 
激光与光电子学进展
2021, 58(10): 1011023
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 e-mail: zhhli@lps.ecnu.edu.cn
We report a frequency-multiplexing method for multi-beam photon-counting light detection and ranging (LiDAR), where only one single-pixel single-photon detector is employed to simultaneously detect the multi-beam echoes. In this frequency-multiplexing multi-beam LiDAR, each beam is from an independent laser source with different repetition rates and independent phases. As a result, the photon counts from different beams could be discriminated from each other due to the strong correlation between the laser pulses and their respective echo photons. A 16-beam LiDAR system was demonstrated in three-dimensional laser imaging with 16 pulsed laser diodes at 850 nm and one single-photon detector based on a Si-avalanche photodiode. This frequency-multiplexing method can greatly reduce the number of single-photon detectors in multi-beam LiDAR systems, which may be useful for low-cost and eye-safe LiDAR applications.
Photonics Research
2019, 7(12): 12001381

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!